metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Scharwitz, Tobias van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail: william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.016 Å H-atom completeness 96% Disorder in solvent or counterion R factor = 0.032 wR factor = 0.080 Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(S-Methylcysteinato)(η^5 -pentamethylcyclopentadienyl)iridium(III) trifluoromethanesulfonate hemihydrate

The cation of the title compound, $[Ir(C_{10}H_{15})-(C_4H_8NO_2S)](CF_3SO_3)\cdot 0.5H_2O$, contains a half-sandwich $[Ir(C_5Me_5)]^{2+}$ fragment, the Ir^{III} atom of which is coordinated by the tridentate *S*-methylcysteinate ligand (*S*-MecysO) in a $\kappa^3 N, O, S$ manner. An R_{Ir} configuration is observed for the transition metal and an S_s configuration for the chiral thioether S atom.

Comment

 α -Amino acids with coordinating side chains can function as tridentate ligands towards the half-sandwich organometallic fragments $(C_5Me_5)M$ (M = Ru, Co, Rh or Ir), leading to the formation of N,O,N-(L-histidine) (Krämer et al., 1990; Sheldrick, Hauck & Korn, 1994), N,O,O-(L-aspartic acid) (Krämer et al., 1990; Bergs et al., 1993; Sheldrick, Hauck & Korn, 1994) and N,O,S-chelates with L-methionine, L-methylcysteine and L-penicillamine (Sheldrick, Hauck & Korn, 1994; Sheldrick & Gleichmann, 1994; Zhou et al., 1994). The crystal structure determinations of [(C5Me5)Co(H-met-O)](FeCl4) (H-met-OH = L-methionine) and $[(C_5Me_5)Co(S-Mecys-O)CoCl_3]$ (Sheldrick, Hauck & Korn, 1994) have established differing chiralities for the coordinating thioether S atoms. An $R_{\rm S}$ configuration is observed in the former case and an S_{S} configuration in the latter complex, whose S-Mecvs-O ligand is tetradentate. The chiralities of the S and metal atoms in such complexes are assigned in accordance with the Cahn-Ingold-Prelog rules and the IUPAC recommendations for pseudotetrahedral organometallic complexes, i.e. by giving the pentamethylcyclopentadienyl ligand the highest priority. Whereas the S-Co-O and O-Co-N angles are similar in both complexes, a marked narrowing of the S-Co-N angles from 93.4 (2) to 85.2 $(5)^{\circ}$ is observed on going from the sixmembered ring of the H-met-O complex to the more strained five-membered ring of the S-Mecys-O complex.

Received 24 October 2006 Accepted 9 December 2006

© 2007 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Figure 2

A projection of the crystal structure along the b axis, showing the hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

We have determined the structure of the title compound, (I), to establish the S-atom configuration for a tridentate S-Mecys-O ligand. As depicted in Fig. 1, this once again adopts an $S_{\rm S}$ configuration, presumably to avoid a relatively close intramolecular contact between the S lone pair and the coordinating carboxylate O atom. Both five-membered chelate rings exhibit envelope conformations with atom N1 in the flap position.

As a result of the markedly longer Ir1-N1 and Ir1-S1 distances of 2.096 (7) and 2.372 (3) Å, respectively, in (I) compared with the analogous Co-N1 and Co1-S1 distances of 1.97 (1) and 2.270 (5) Å, respectively, in $[(C_5Me_5)Co(S-$ Mecys-O)CoCl₃] (Sheldrick, Hauck & Korn, 1994), the N1-M-S1 angle narrows to 81.1 (2)° for M = Ir compared with 85.0 (4)° for M = Co. This is also the case for the N1-M-O1 and S1-M-O1 angles, whose values of 76.1 (3) and 85.0 (2)° for M = Ir are on average 6.4° smaller than for M = Rh. A concomitant increase in the bond angles at S1 from 95.3 (5) (for M = Co) to 99.0 (4)° for Ir1-S1-C3, and from 105.4 (6) (for M = Co) to 108.9 (5)° for Ir1-S1-C4, compensates for the narrower N1-Ir1-S1 angle.

The amino function of (I) participates in two intermolecular hydrogen bonds, delineating infinite chains along the *a* axis (Table 1 and Fig. 2).

Experimental

Ag(CF₃SO₃) (102.7 mg, 0.4 mmol) was added to a solution of $[(C_5Me_5)IrCl_2]_2$ (79.7 mg, 0.1 mmol) in acetone (10 ml). Following stirring at room temperature for 30 min and centrifugation of the resulting AgCl, the solvent was removed under vacuum and the remaining solid treated with S-methylcysteine (27.0 mg, 0.2 mmol) in a CH₃OH-CH₂Cl₂ (1:1, 10 ml) mixture. After heating for 2 h at 348 K and solvent removal, the product, (I), was dissolved in methanol-H₂O (1:1, 3 ml), precipitated with diethyl ether and dried under vacuum (yield 65%). Elemental analysis for $C_{15}H_{23}F_3IrNO_5S_2$ ($M_r =$ 610.70): found C 29.7, H 3.8, N 2.3, S 11.0%; calculated C 29.5, H 3.8, N 2.3, S 10.5%; FAB-MS: m/z (%) 462 (100) $[M - CF_3SO_3]^+$. Single crystals suitable for X-ray analysis were grown by slow evaporation of an aqueous solution of (I).

Z = 4

 $D_r = 1.905 \text{ Mg m}^{-3}$

 $0.49 \times 0.28 \times 0.23 \text{ mm}$

2677 independent reflections

every 100 reflections

intensity decay: 2%

2487 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 6.43 \text{ mm}^{-1}$

T = 292 (2) K

Prism, yellow

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 25.0^{\circ}$ 3 standard reflections

Crystal data

[Ir(C10H15)(C4H8NO2S)]-(CF₃SO₃)·0.5H₂O $M_{\star} = 619.67$ Orthorhombic, $P2_12_12_1$ a = 8.510(5) Å b = 10.728 (3) Å c = 23.664 (4) Å V = 2160.4 (14) Å³

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: ψ scan (XPREP in SHELXTL; Sheldrick, 1995) $T_{\min} = 0.130, \ T_{\max} = 0.230$ 2865 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0479P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 2.2565P]
$wR(F^2) = 0.080$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2677 reflections	$\Delta \rho_{\rm max} = 1.37 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	498 Friedel pairs
	Flack parameter: -0.007 (16)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$\begin{array}{l} N1 - H11 \cdots O2^{i} \\ N1 - H12 \cdots O2'^{ii} \end{array}$	0.90 0.90	2.12 1.95	2.984 (11) 2.846 (13)	160 176	
Summatry addry (i) $x = \frac{1}{2}$ $y = \frac{3}{2}$ $z = (ii) x = 1$ $y = 1$ z					

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) x - 1, y + 1, z.

The H atoms of the cation were constrained to idealized positions and refined using a riding model, with C-H = 0.98 Å for atom C2, 0.97 Å for atom C3, and 0.96 Å for atom C4 and the C₅Me₅ methyl C atoms C1'-C5', and N-H = 0.90 Å for atom N1, with $U_{iso}(H)$ = $1.2U_{eq}(C2, C3), 1.5U_{eq}(C4, C1'-C5')$ or $1.2U_{eq}(N1)$. The R configuration of the S-methylcysteine $C\alpha$ atom is known for the natural amino acid and was assigned to C2. It was confirmed by the Flack (1983) parameter x = 0.01 (2). The site-occupation factor of the water atom OW1' refined to a value close to 0.5 and was subsequently fixed at half occupancy. The highest peak in the final difference synthesis is 0.90 Å from Ir1.

Data collection: *R3m/V* (Siemens, 1989); cell refinement: *R3m/V*; data reduction: *XDISK* (Siemens, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97*.

References

- Bergs, R., Sünkel, K. & Beck, W. (1993). Chem. Ber. 126, 2429-2432.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Krämer, R., Polborn, K., Wanjek, H., Zahn, I. & Beck, W. (1990). Chem. Ber. 123, 767–778.
- Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. & Gleichmann, A. (1994). J. Organomet. Chem. 470, 183–187. Sheldrick, W. S., Hauck, E. & Korn, S. (1994). J. Organomet. Chem. 467, 283–
- 292. Siemens (1989). R3m/V User's Guide. Version 3.2. Siemens Analytical X-ray
- Instruments Inc., Madison, Wisconsin, USA.
- Zhou, Y., Wagner, B., Polborn, K., Sünkel, K. & Beck, W. (1994). Z. Naturforsch. Teil B, 49, 1193–1202.